
APPLYING NEW OPTIMIZATION

ALGORITHMS TO MODEL PREDICTIVE

CONTROL

Stephen J. Wright
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Abstract

The connections between optimization and control theory have been explored by many re-
searchers, and optimization algorithms have been applied with success to optimal control. The
rapid pace of developments in model predictive control has given rise to a host of new problems
to which optimization has yet to be applied. Concurrently, developments in optimization, and es-
pecially in interior-point methods, have produced a new set of algorithms that may be especially
helpful in this context. In this paper, we reexamine the relatively simple problem of control of
linear processes subject to quadratic objectives and general linear constraints. We show how new
algorithms for quadratic programming can be applied e�ciently to this problem. The approach
extends to several more general problems in straightforward ways.

Keywords

optimization, model predictive control, interior-point methods

Introduction

In this paper we apply some recently developed tech-
niques from the optimization literature to a core prob-
lem in model predictive control, namely, control of a
linear process with quadratic objectives subject to gen-
eral linear constraints. To describe our algorithms, we
use the following formulation:

minxj;uj
PN�1

j=0
1

2
(xTj Qxj + uTj Ruj) + qTxj + rTuj

+1

2
xTN

~QxN + ~qTxN ;

xj+1 = Axj +Buj ; j = 0; : : : ; N � 1; (1)

x0 �xed;

Guj + Jxj � g; j = 0; : : : ; N � 1;

where Q and R are positive semide�nite matrices and

uj 2 IR
m; xj 2 IR

n; g 2 IRmc :

This problem is well known from the optimal control
literature, but it has been revived recently in the con-
text of model predictive control (MPC). In MPC appli-
cations such as receding horizon control (Rawlings and
Muske, 1993) and constrained linear quadratic regula-
tion (Scokaert and Rawlings, 1995), controls are ob-
tained by solving problems like (1) repeatedly. As we
describe later, the methods we outline here can be ex-
tended easily to more general forms of (1), which may
contain outputs yj = Cxj, penalties on control jumps
uj+1 � uj, and so on.

The two approaches we consider in detail involve
the infeasible-interior-point method and the active set
method. Both methods are able to exploit the special
structure in the problem (1), as they must to obtain a
solution in a reasonable amount of time.

The techniques discussed here represent just one
of many potential contributions that optimization can
make to MPC. Developments in MPC have created a
demand for fast, reliable solution of problems in which
nonlinearities, noise, and constraints on the states and
controls may all be present. Meanwhile, recent algo-
rithmic developments in areas such as interior-point
methods and stochastic optimization have produced
powerful tools that are yet to be tested on MPC prob-
lems. By no means do we expect optimization algo-
rithms to be a panacea for all the problems that arise
in MPC. In many cases, more specialized algorithms
motivated by the particular control problem at hand
will be more appropriate. We do expect, however, that
some MPC problems will bene�t from the optimiza-
tion viewpoint and that interactions between optimiz-
ers and engineers are the best way to realize these ben-
e�ts.

In the next section, we sketch the way in which
algorithmic research in optimization relates to applica-
tions, illustrating the point with a problem from opti-
mal control. Next, we present the interior-point algo-
rithm and show how it can be applied e�ciently to the
problem (1). We then move to the active set approach

1

2 IMPACT OF COMPUTER SCIENCE

and again outline its application to (1).

Applications and Paradigms

The �eld of optimization was founded as a separate
academic discipline during the 1940s. Its emergence
was due to a number of factors. On the \demand side,"
there was a desire to approach the huge logistical prob-
lems posed by the wartime economy in a more system-
atic way, and a realization that the same techniques
also could be applied to the logistical problems faced
by industry and commerce during peacetime. On the
\supply side," Dantzig's development of the simplex
method and the appearance of digital computers were
two factors that played an important role.

Connections between optimization and other
mathematical disciplines, such as the calculus of varia-
tions and game theory, were recognized by the earliest
researchers in the �eld. Today, research in optimiza-
tion continues to give impetus to other areas of math-
ematics, such as nonsmooth analysis, linear algebra,
and combinatorics. It has found applications in oper-
ations research, industrial engineering, and economics;
in experimental sciences and statistics (the problem
of �tting observed data to models is an optimization
problem (Seber and Wild, 1989)); and in the physical
sciences (for example, meteorological data assimilation
(National Research Council, 1991) and superconductor
modeling (Garner, Spanbauer, Benedek, Strandburg,
Wright and Plassmann, 1992)).

Most researchers in optimization work with a set
of standard paradigms, each of which is a mathematical
formulation that is supposed to represent a large class
of applications. Examples include linear programming,
convex quadratic programming, unconstrained nonlin-
ear optimization, and nonlinear programming. These
paradigms and a few others were proposed in the early
days of optimization, and they are still the focus of
most of the research e�ort in the area. Optimization
paradigms are an interface between optimization re-
search and optimization applications. They focus the
e�orts of theoreticians and software developers on well-
de�ned tasks, thereby freeing them from the e�ort of
becoming acquainted with the details of each individ-
ual application. Linear programming is possibly the
most successful paradigm of all, because a vast range
of linear programs can be solved with a single piece of
software, with little need for case-by-case interactions
between software developers and users. More complex
paradigms, such as nonlinear programming, are not so
easy to apply. General software for these problems of-
ten is unable to take advantage of the special features
of each instance, resulting in ine�ciency. The algo-
rithms often can be customized, however, to remove
these ine�ciencies.

Optimal control and model predictive control illus-
trate the latter point. Many problems in these areas

�t into one of the standard optimization paradigms,
but it is often unclear how the optimization algo-
rithms can be applied e�ciently. In some cases,
special-purpose algorithms have been devised (for ex-
ample, di�erential dynamic programming (Jacobson
and Mayne, 1970)); in other cases, standard optimiza-
tion algorithms such as Newton's method, the conju-
gate gradient method, and gradient projection algo-
rithms have been adapted successfully to the optimal
control setting (Polak, 1970; Bertsekas, 1982; Dunn and
Bertsekas, 1989).

We close this section with the example of the clas-
sical discrete-time optimal control problem with Bolza
objectives, a problem that arises frequently in the MPC
literature (Rawlings, Meadows and Muske, 1994). This
problem provides a nice illustration of the potential im-
pact of optimization on control. It shows, too, that
naive application of optimization algorithms to control
problems can lead to gross ine�ciencies, which can be
remedied by a little customization and adaptation. The
problem is

minxj;uj
PN�1

j=0 Lj(xj; uj) + L̂N (xN);

xj+1 = fj(xj ; uj); j = 0; : : : ; N � 1; x0 �xed;(2)

where xj 2 IRn, uj 2 IRm. It can be viewed
as an unconstrained optimization problem in which
the unknowns are (u0; u1; : : : ; uN�1); the states
(x1; x2; : : : ; xN) can be eliminated through the state
equations xj+1 = fj(xj ; uj). However, it would be
highly ine�cient to solve (2) with a general implemen-
tation of Newton's method for unconstrained optimiza-
tion. Such a code usually requires the user to evalu-
ate the function, gradient, and Hessian on request at
any given set of variable values. The Hessian for (2)
with respect to (u0; : : : ; uN�1) is dense, so the code
would require O(N3m3) operations simply to compute
the Newton step. The paper by (Dunn and Bert-
sekas, 1989) shows how the same step can be obtained
through a specialized calculation that takes advantage
of the structure in (2) and requires only O(N (m3+n3))
operations. Hence, the Newton algorithm must be tai-
lored to the special form of (2) if we are to have any
hope of solving this problem e�ciently.

The problem (2) also can be viewed as a nonlin-
ear programming problem in which the variables are
(u0; : : : ; uN�1; x1; : : : ; xN) and the state equations are
viewed as equality constraints. The special structure
becomes transparent in this formulation, since the Ja-
cobian of the constraints and the Hessian of the objec-
tive function are both sparse (block-banded) matrices.
Therefore, a nonlinear programming code that imple-
ments some variant of sequential quadratic program-
ming may perform quite e�ciently, provided that it
uses exact second derivatives and exploits the sparsity.
The disadvantage is that nonlinear programming algo-
rithms tend to have weaker global convergence proper-
ties than do unconstrained optimization algorithms. In

Optimization and Model Predictive Control 3

the special case of fj linear and Lj convex quadratic,
the problem (2) is a convex programming problem, and
global convergence is attained easily with either formu-
lation.

When constraints on the controls uj are added to
(2), we still have the choice of eliminating the states
xj or not, though both formulations yield a nonlinear
programming problem. (The formulation in which the
states are eliminated will have simpler constraints and
a more complicated objective function.) When con-
straints on the states are introduced, however, elimi-
nation of the xj becomes more problematic, and there
is little choice but to view the problem as a non-
linear programming problem in which the unknowns
are (u0; u1; : : : ; uN�1; x1; x2; : : : ; xN). We consider the
linear-quadratic form of this problem in the next two
sections.

Interior-Point Methods for Linear-Quadratic
Problems

In this section, we consider the linear-quadratic prob-
lem (1). It has frequently been noted that this prob-
lem is, in optimization terms, a convex quadratic pro-
gram. Two successful methods for addressing this
class of problems are the active set method described
by (Fletcher, 1987) and the interior-point method de-
scribed by (Wright, 1996). However, the special struc-
ture of (1) means that we must take care in applying
either approach to this problem. A naive application of
a quadratic programming code based on the active-set
method (for instance, QPOPT (Gill, Murray, Saunders
and Wright, 1991)) will give poor results, typically re-
quiring O(N3(m + n +mc)

3) operations, where mc is
the number of rows in the matrices G and J . In this
section, we show how the interior-point algorithm can
be applied to (1), while in the next section we examine
the adaptations that are needed to make the active set
approach more e�cient.

We state at the outset that the interior-point ap-
proach we describe here can be adapted to variousmod-
i�cations and generalizations of (1) without signi�cant
loss of e�ciency. For instance,

- the matrices Q, R, A, B, G, and J can vary with
j;

- an output vector yj = Cxj can be incorporated
into the objective and constraints;

- we can incorporate constraints and objective terms
that involve states/controls from adjacent stages;
for example, a penalty on the control move (uj+1�
uj)i for some component i = 1; 2; : : :;m.

The last generalization is useful when the problem is
obtained as a discretization of the continuous problem,
since many discretization schemes for ordinary di�eren-
tial equations and di�erential algebraic equations lead

to relationships between states and controls at a num-
ber of adjacent time points.

The rest of this section is organized as follows.
We de�ne the mixed monotone linear complementarity

problem (mLCP), a powerful paradigm that general-
izes the optimality conditions for linear and quadratic
programs and is a convenient platform for describing
interior-point methods. We then outline an infeasible-
interior-point algorithm for the mLCP and discuss its
properties. Finally, we customize this algorithm to con-
vex quadratic programming and the linear-quadratic
problem (1).

Mixed Linear Complementarity and the Infeasible-

Interior-Point Framework

The mLCP is de�ned in terms of a square, positive
semide�nite matrix M 2 IRn�n and a vector q 2 IRn.
The problem is to �nd vectors z, x, and s such that�

M11 M12

M21 M22

��
z
x

�
+

�
q1
q2

�
=

�
0
s

�
; (3)

x � 0; s � 0; xT s = 0: (4)

Here, M11 and M22 are square submatrices of M with
dimensions n1 and n2, respectively, and the vector q is
partitioned accordingly.

The infeasible-interior-point algorithm for (3),(4)
starts at point (z0; x0; s0) for which x0 > 0 and s0 > 0
(interior to the nonnegative orthant) but possibly in-

feasible with respect to the constraints (3). All iterates
(zk; xk; sk) retain the positivity properties xk > 0 and
sk > 0, but the infeasibilities and the complementarity
gap de�ned by

�k = (xk)T sk=n2 (5)

are gradually reduced to zero as k !1. Each step of
the algorithm is a modi�ed Newton step for the system
of nonlinear equations de�ned by the feasibility condi-
tions (3) and the complementarity conditions xisi = 0,
i = 1; 2; : : :; n2. We can write this system as

F (z; x; s)
def
=

2
4 M11z +M12x+ q1
M21z +M22x� s+ q2

XSe

3
5 = 0; (6)

where we have used the notation

X = diag(x1; x2; : : : ; xn2); S = diag(s1; s2; : : : ; sn2):

The algorithm has the following form:

Algorithm IIP
Given (z0; x0; s0) with (x0; s0) > 0;
for k = 0; 1; 2; : : :

for some �k 2 (0; 1), solve2
4 M11 M12 0
M21 M22 �I
0 Sk Xk

3
5
2
4 �z

�x
�s

3
5 =

2
4 �rk1

�rk2
�XkSke + �k�ke

3
5 ;

(7)

4 IMPACT OF COMPUTER SCIENCE

to obtain (�zk;�xk;�sk), where

rk1 = M11z
k +M12x

k + q1;

rk2 = M21z
k +M22x

k � sk + q2;

e = (1; 1; : : : ; 1)T :

set

(zk+1; xk+1; sk+1) (8)

= (zk; xk; sk) + �k(�z
k;�xk;�sk);

for some �k 2 (0; 1] that retains
(xk+1; sk+1) > 0;

end(for).

Note that (7) di�ers from the pure Newton step for
(6) only because of the term �k�ke on the right-hand
side. This term plays a stabilizing role, ensuring that
the algorithm converges steadily to a solution of (3),(4)
while remaining inside the positive orthant de�ned by
(x; s) > 0.

The only two parameters to choose in implement-
ing Algorithm IIP are the scalars �k and �k. The con-
vergence analysis leaves the choice of �k relatively un-
fettered (it is often con�ned to the range [�; 0:8], where
� is a �xed parameter, typically 10�3), but �k is re-
quired to satisfy the following conditions.

(i) The reduction factor for the infeasibility norms
kr1k and kr2k should be smaller than the reduc-
tion factor for �; that is, the ratios krk1k=�k and
krk2k=�k should decrease monotonically with k;

(ii) The pairwise products xisi, i = 1; : : : ; n2 should
all approach zero at roughly the same rate; that is,
the ratios xki s

k
i =�k should remain bounded away

from zero for all i and all k. (Note that �k repre-
sents the average values of the terms xki s

k
i .)

(iii) We require su�cient decrease in �, in the sense
that the decrease actually obtained is at least a
small fraction of the decrease predicted by the lin-
ear model (7). (See (Dennis and Schnabel, 1983)
for a discussion of su�cient decrease conditions.)

(iv) The chosen value of �k should not be too much
smaller than the largest possible value for which
(i){(iii) are satis�ed.

For details, see (Wright, 1993b; Wright, 1996). When
�k and �k satisfy these conditions, global convergence
to a solution of (3),(4) is attained whenever such a
solution exists. A slightly enhanced version of the al-
gorithm, in which �k is allowed to be zero on some
of the later iterations, exhibits superlinear conver-
gence under some additional assumptions. The prop-
erty that excites many of the theoreticians working
on interior-point methods|polynomial complexity|is

also attained when the starting point (z0; x0; s0) has
su�ciently large x0 and s0 components, relative to the
initial residuals r01 and r02 and the solutions of (3),(4).

In practical implementations of Algorithm IIP, �k
often is chosen via the following simple heuristic. First,
we set �maxk to be the supremum of the following set:

f� 2 (0; 1] j (zk; xk; sk) + �(�zk;�xk;�sk) > 0g: (9)

Then we set

�k = min(1; 0:995 � �maxk): (10)

That is, we forget about the theoretical conditions (i){
(iv) above and simply choose �k to step almost all
the way to the boundary of the nonnegative orthant.
This tension between theory and practice existed for a
long time during the development of primal-dualmeth-
ods. However, recent work has reconciled the di�er-
ences. There exist relaxed versions of conditions (i){
(iv) that are satis�ed by the \practical" choice of �k
from (9),(10). Hence, the parameters �k and �k and be
chosen to make Algorithm IIP both practically e�cient
and theoretically rigorous.

The major operation to be performed at each step
of Algorithm IIP is the solution of the linear system
(7). The matrix in this system obviously has a lot of
structure due to the presence of the zero blocks and the
diagonal components I, Sk, and Xk. Additionally, the
matrix M is sparse in most cases of practical interest,
including our motivating problem (1), so sparse matrix
factorizations are called for. In general, these are fairly
complex pieces of software, but problems of the form
(1) require only banded factorization code, which is
comparatively simple.

The �rst step in solving (7) is to eliminate the �s
component. Since the diagonal elements ofXk are pos-
itive, we can rearrange the last block row in (7) to ob-
tain

�s = (Xk)�1(�XkSke+ �k�ke � S
k�xk)

= �sk + (Xk)�1(�k�ke� Sk�xk):

By substituting into the �rst two rows of (7), we obtain

�
M11 M12

M21 M22 + (Xk)�1Sk

� �
�z
�x

�
(11)

=

�
�rk1

�rk2 � sk + �k�k(X
k)�1e

�
:

In most cases, some of the partitions M11, M12, M21,
or M22 are zero or diagonal or have some other sim-
ple structure, so further reduction of the system (11)
is usually possible. This phenomenon happens, for
instance, when (3),(4) is derived from a linear or
quadratic program, as we show below.

Since the factorization of the coe�cient matrix in
(7) comprises most of the work at each iteration, we

Optimization and Model Predictive Control 5

may be led to ask whether it is really necessary to com-
pute a fresh factorization every time. A set of heuristics
in which the factorization is essentially re-used on alter-
nate steps was proposed by (Mehrotra, 1992). Mehro-
tra's algorithm has proved to be successful in practice
and is the basis for the vast majority of interior-point
codes for linear programming.

Linear and Quadratic Programming as mLCPs

We now show how linear and convex quadratic pro-
gramming problems can be expressed in the form
(3),(4) and solved via Algorithm IIP. Consider �rst the
linear program in standard form:

min
x

cTx subject to Ax = b, x � 0, (12)

where c and x are vectors in Rn, b 2 IRm, and A 2
IRm�n. The dual of (12) is

max
�;s

bT� subject to AT� + s = c, s � 0, (13)

where � 2 IRm are the dual variables (or, alternatively,
the Lagrange multipliers for the constraints Ax = b)
and s 2 IRn are the dual slacks. The Karush-Kuhn-
Tucker (KKT) conditions for (12),(13) are as follows:

AT�+ s = c;

Ax = b; (14)

x � 0; s � 0; xT s = 0:

Because (12) is a convex programming problem, the
KKT conditions are both necessary and su�cient.
Hence, we can �nd a primal-dual solution for the linear
program by �nding a vector (x; �; s) that satis�es the
conditions (14). We can verify that (14) has the form
(3),(4) by making the following identi�cations between
these two systems:�

M11 M12

M21 M22

�
=

�
0 A
�AT 0

�
;

�
q1
q2

�
=

�
�b
c

�
;

z �; x x; s s:

Hence the KKT conditions (14) are an mLCP, and we
can obtain solutions to the linear program (12) and its
dual (13) simultaneously by applying Algorithm IIP to
(14).

Next, we consider the following general convex
quadratic program:

min
z

1

2
zTQz + cT z s.t. Hz = h, Gz � g, (15)

where Q is a symmetric positive semide�nite matrix.
The KKT conditions for this system are

Qz +HT � + GT� = �c;

�Hz = �h;

�Gz � t = �g; (16)

t � 0; � � 0; tT� = 0:

The following identi�cations con�rm that the system
(15) is an mLCP:

M11 =

�
Q HT

�H 0

�
; M12 =

�
GT

0

�
;

M21 =
�
�G 0

�
; M22 = 0;

q1 =

�
c
h

�
; q2 = g;

z

�
z
�

�
; x �; s t:

The reduced form (11) of the linear system to be solved
at each iteration of Algorithm IIP is

2
4 Q HT GT

�H 0 0
�G 0 (�k)�1T k

3
5
2
4 �z

��
��

3
5 (17)

=

2
4 �rkc

�rkh
�rkg � tk + �k�k(�k)�1e

3
5 :

Here, �k is de�ned as �k = (tk)T�k=m, where m is the
number of inequality constraints in (15). It is custom-
ary to multiply the last two block rows in (17) by �1,
so that the coe�cient matrix is symmetric inde�nite.
We then obtain2

4 Q HT GT

H 0 0
G 0 �(�k)�1T k

3
5
2
4 �z

��
��

3
5 (18)

=

2
4 �rkc

rkh
rkg + tk � �k�k(�

k)�1e

3
5 :

Since (�k)�1T k is diagonal with positive diagonal el-
ements, we can eliminate �� from (18) to obtain an
even more compact form:

�
Q+GT�k(T k)�1G HT

H 0

� �
�z
��

�
(19)

=

�
�rkc +GT [�k(T k)�1rkg + �k � �k�k(T

k)�1e]
rkh

�
:

Factorizations of symmetric inde�nite matrices
have been studied extensively in the linear algebra lit-
erature; see (Golub and Van Loan, 1989) for references
to the major algorithms. Standard software is avail-
able, at least in the dense case (Anderson, Bai, Bischof,
Demmel, Dongarra, Du Croz, Greenbaum, Hammar-
ling, McKenney, Ostrouchov and Sorensen, 1992). Al-
gorithms for the sparse case have also received con-
siderable attention recently (Ashcraft, Grimes and
Lewis, 1995) and have been implemented in the con-
text of interior-point methods by (Fourer and Mehro-
tra, 1993).

In solving the linear systems (18) or (19), we are
free to reorder the rows and columns of the coe�cient

6 IMPACT OF COMPUTER SCIENCE

matrix in any way we choose, before or during the fac-
torization. As we see below, the problem (1) bene�ts
dramatically from such a reordering, since the coe�-
cient matrix in this case becomes a narrow-banded ma-
trix, which is easily factored via existing linear algebra
software such as LAPACK (Anderson et al., 1992).

\Soft" Constraints and Penalty Terms

The cost of introducing slack variables and dummy
variables into the formulation (15) is often surprisingly
small when the quadratic program is solved by the tech-
nique outlined above, even though the total number of
variables in the problemmay increase appreciably. The
reason is that the new variables can often be substi-
tuted out of the linear system (11), as in (18) and (19),
so that they may not a�ect the size of the linear system
that we actually solve. This comment is relevant when
we are adding norm constraints or \soft" constraints
to the problems (15) or (1), as in (Scokaert and Rawl-
ings, 1996). Suppose, for instance, that we wish to
include the soft constraint Gsz � gs in (15), and we
choose to do this by including a term �k(Gsz � gs)+k1
to the objective function. (The subscript \+" denotes
the positive part of a vector, obtained by replacing its
negative components by zeros.) To restore the problem
to the form of a standard convex quadratic program,
we introduce the \dummy" vector v, and

- add the term �eTv to the objective, where e =
(1; 1; : : : ; 1)T ;

- introduce the additional constraints v � 0, v �
Gsz � gs.

By computing the mLCP form (3),(4) of the expanded
problem, applying Algorithm IIP, and reducing its step
equations as far as we can via simple substitutions, we
�nd that the linear system is ultimately no larger than
(19). The details are messy and we omit them from
this discussion.

In the case of soft constraints and penalty terms,
the consequence of this observation is that the amount
of work per iteration is not really sensitive to whether
we choose a 1-norm penalty or an 1-norm penalty,
though the latter option adds fewer dummy variables
to the formulation of the problem.

Solving LQR E�ciently via the mLCP Formulation

The linear-quadratic problem (1) is obviously a special
case of (15), as we see by making the following identi-

�cations between the data:

Q

2
6666666664

R
Q

R
. . .

Q
R

~Q

3
7777777775
;

G

2
6664
G J

G J
. . .

. . .

G J

3
7775 ;

H

2
6664
B �I

A B �I
. . .

A B �I

3
7775 ;

z

2
66666664

u0
x1
u1
...

uN�1
xN

3
77777775
; c

2
66666664

r
q
r
...
r
~q

3
77777775
;

g

2
6664
g
g
...
g

3
7775 ; h

2
6664
�Ax0
0
...
0

3
7775 ;

As suggested earlier, the matrices in this problem are
all block-banded; their nonzeros are clustered around a
line connecting the upper-left and lower-right corners
of the matrix. When we formulate the linear system
(17), the nonzeros seem to become widely dispersed.
However, by interleaving the states xj, the controls uj,
the adjoints pj and the Lagrange multipliers �j for the
constraints Guj + Jxj+1 � g, we can return the coef-
�cient matrix in (17) to banded form. We order the
unknowns in the system as

(�u0;��0;�p1;�x1;�u1; : : : ;��N�1;�pN ;�xN)

and rearrange the rows and columns of the matrix ac-
cordingly to obtain2
666666666666664

R GT BT

G �Dk
0 0

B 0 0 �I
�I Q 0 JT AT

0 R GT BT

J G �Dk
1 0

A B 0 0 �I

�I Q
. . .

. . .
. . .

3
777777777777775

:

(20)

Optimization and Model Predictive Control 7

(We have used Dk
j to denote sections of the diagonal

matrix (�k)�1T k from (17).) This system can be re-
duced further by using the diagonal entries Dk

j to elim-
inate ��j, j = 0; 1; : : : ; N � 1.

The computational savings obtained by recovering
bandedness are signi�cant. If we assume the dimen-
sions

uj 2 IR
m; xj 2 IR

n; �j 2 IR
mc ;

the banded matrix has total dimensionN (2n+m+mc)
and half-bandwidth of (2n+m +mc � 1). Therefore,
the time required to factor this matrix is O(N (2n+m+
mc)

3), compared with O(N3(2n+m+mc)
3) for a dense

matrix of the same size. In the absence of constraints
(that is, mc = 0), this cost has exactly the same order
as the cost of solving a linear-quadratic version of (2)
by using dynamic programming techniques.

Stagewise ordering of the equations and variables
in (17) is the key to obtaining a banded structure. As
mentioned above, we can maintain the banded struc-
ture when outputs yk = Cxk and other constraints are
introduced into the model, provided that we continue
to order the variables by stage.

The techniques outlined above are quite similar to
those described in (Wright, 1993a). The di�erence lies
in the use of infeasible-interior-point methods above,
in contrast to the techniques of (Wright, 1993a) which
combined feasible interior-point methods with an em-
bedding of the original problem into an expanded prob-
lem for which a feasible initial point is easy to compute.
The new approach is cleaner, more practical, and more
e�cient, while remaining theoretically rigorous.

Active Set Methods for Linear-Quadratic Prob-
lems

The structure of the problem (1) can also be exploited
when we use an active set method in place of the
interior-point method described above. Again, we �nd
that the linear algebra at each step can be performed
in terms of banded matrices rather than general dense
matrices. The details are di�erent from (and some-
what more complicated than) the interior-point case.
We start by sketching a single iterate of the active
set approach. For a more complete description, see
(Fletcher, 1987).

Active set methods for the general convex program
(15) generate a sequence of feasible iterates. At each
iterate, a certain subset of the constraints Gz � g are
active (that is, hold as equalities). On each step, we
choose a subset of the active set known as the working
set. (Typically, the working set either is identical to
the active set or else contains just one less constraint.)
We then compute a step from the current point z that
minimizes the objective function in (15) while main-
taining activity of the constraints in the working set,
and also ensuring that the original equality constraints

Hz = h remain satis�ed. If we denote by �G the subset
of rows of G that make up the working set, the step
�z is obtained by solving the following system:

min�z
1
2
(z +�z)TQ(z +�z) + cT (z +�z)

subject to H�z = 0; �G�z = 0:

Equivalently, we have

min
�z

1

2
�zTQ�z + ~cT�z; s.t. H�z = 0; �G�z = 0;

(21)
where ~c = c + Qz. The KKT conditions for (21) are
that �z is a solution of this system if and only if there
are vectors �� and ��� such that (�z;��;���) satis�es
the following system:2

4 Q HT �GT

H 0 0
�G 0 0

3
5
2
4 �z

��
���

3
5 =

2
4 �~c0

0

3
5 : (22)

We can obtain �z from this system and then do a
line search along this direction, stopping when a new
constraint is encountered or when the minimum of the
objective function along this direction is reached.

Note the similarity between (22) and (17). The
coe�cient matrices di�er only in that there is no di-
agonal term in the lower left of (22), and some rows
are deleted from G. For the problem (1), the matrices
Q, H, and �G are banded, so a stagewise reordering of
the rows and columns in (22) again produces a banded
system. The matrix will not be quite as regular as
(20), because of the missing columns in �G, but similar
savings can be achieved in factoring it.

The banded matrix is best factored by Gaussian
elimination with row partial pivoting, as implemented
in the LAPACK routine dgbtrf and its a�liated so-
lution routine dgbtrs (Anderson et al., 1992). To the
author's knowledge, there is no software that can ex-
ploit the fact that the matrix is symmetric in addition
to being banded.

Updating Factorizations

We have noted that the matrix in (22) is banded for the
problem (1), so we can use software tailored to such ma-
trices to obtain signi�cant savings over the dense linear
algebra that is usually employed in standard quadratic
programming software. The story is not quite this sim-
ple, however. The systems (22) that we solve at each
iteration are closely related to one another, di�ering
only in that a column is added and/or deleted from �G.
Therefore, it does not make sense to solve each system
\from scratch"; we try instead to modify the matrix
factorization that was computed at an earlier iteration
to accommodate the minor changes that have occurred
since then. In the general case of dense matrices, up-
dating of factorizations has been studied extensively
and is implemented in software for many kinds of op-
timization problems. (Simplex algorithms for linear

8 IMPACT OF COMPUTER SCIENCE

programming, for instance, depend heavily on e�cient
updating of the basis matrix at each iteration.) The
question we face here is: Can we perform e�cient up-
dating of the factorization while still exploiting band-
edness? We answer this question in the a�rmative by
sketching a technique for re-solving (22) after a row has
been added to or deleted from �G.

We start with addition of a column to the system
(22). Changing the notation for convenience, we de-
note the original coe�cient matrix by M and the new
row/column by a. We assume without loss of general-
ity that a is ordered last. Then the updated matrix �M
is

�M =

�
M a
aT 0

�
:

We assume that the LU factorization of the original
matrix M is known, so that there is a permutation
matrix P , a lower triangular L and upper triangular U
such that

PM = LU: (23)

(If M is banded, then the factors L and U also have
nonzeros only in locations near their diagonals.) We
can easily modify L and U to accommodate the new
row/column by adding an extra row and column to
each factor to obtain�
P 0
0 1

� �
M a
aT 0

�
=

�
L

aTU�1 1

��
U L�1Pa
0 �

�
;

where
� = �aTU�1L�1Pa:

Hence, the factorization can be updated at the cost of
triangular substitution with each of L and U . For (1),
the cost of this process is O(N (m+ n+mc)2), so it is
less expensive than refactoring �M from scratch, unless
(m+n+mc) is very small. Since the new row/column
does not participate in the pivoting, the new row of L
and column of U are dense in general, so the factors are
not as sparse as they would be in a factorization from
scratch. Stability issues may arise, since the diagonal
element � may be small. A good strategy for dealing
with these problems is to compute a fresh factorization
whenever � becomes too small by some measure, or
when O(m + n +mc) iterations have passed since the
last refactorization.

We turn now to the case in which a row and column
are deleted fromM . We assume that the factorization
(23) is known and that we obtain a new coe�cient ma-
trix M̂ by deleting row i and column j from the matrix
PM . (Note that the indices of the deleted row and
column will be identical in the original matrix M by
symmetry, but row pivoting may cause them to di�er
in the permuted matrix PM .) Obviously, we can mod-
ify L and U so that their product equals M̂ by simply
deleting the ith row of L and the jth column of U .
Unfortunately, these deletions cause L and U to be-
come nontriangular; the entries Li+1;i+1; Li+2;i+2; : : :

now appear above the diagonal of the modi�ed version
of L. We can restore triangularity by removing the
ith column of L as well as the ith row, and similarly
removing the jth row of U as well as the jth column.
The modi�ed matrix M̂ can be expressed in terms of
these modi�ed L and U factors as follows:

M̂ = L̂Û + vwT ; (24)

where L̂ is the matrix L with ith row and column re-
moved and Û is U with the jth row and column re-
moved, and we have

v =

2
666666664

0
...
0

Li+1;i
...

Ln;i

3
777777775
; w =

2
666666664

0
...
0

Uj;j+1
...

Uj;n

3
777777775
:

The expression (24) shows that the product L̂Û of
two triangular matrices di�ers from M̂ by a rank-
one matrix, which can be accounted for by using the
Sherman-Morrison-Woodbury formula (Golub and Van
Loan, 1989, page 51). From this expression, we have

M̂�1 = (L̂Û + vwT)�1

= (L̂Û)�1 +
[(L̂Û)�1v][wT (L̂Û)�1]

1 +wT (L̂Û)�1v
:

Hence, the solution x̂ of the system

M̂ x̂ = ĉ

can be written as

x̂ = M̂�1ĉ

= (L̂Û)�1ĉ+
(L̂Û)�1v

1 + wT (L̂Û)�1v
wT (L̂Û)�1ĉ:

In computing x̂ via this formula, the main operations
are to perform two pairs of triangular substitutions
with L̂ and Û : one pair to compute (L̂Û)�1ĉ and an-
other to compute (L̂Û)�1v.

Hot Starts

In MPC, the problem (1) is not usually encountered
in isolation. On the contrary, we usually need to solve
a sequence of these problems in which the data A, B,
Q, etc, and/or the starting point x0 vary only slightly
from one problem to the next. It is highly desirable
that the algorithms should be able to take advantage of
this fact. The information could be used, for instance,
to choose good starting values for all the variables or
to make a good guess of the active constraint set (that
is, the matrix �G in (21)). The process of using this
information is called hot starting.

Optimization and Model Predictive Control 9

Sequences of similar linear-quadratic problems can
arise in the control of nonlinear systems. When we ap-
ply the sequential quadratic programming algorithm
to a constrained version of (2), we obtain a search di-
rection at each iteration by solving a problem like (1).
(Actually, we solve a slightly more general problem in
which the data A, B, Q, R varies with stage index j
and linear terms may appear in the objectives and con-
straints.) As the iterates converge to a solution of the
nonlinear problem, the data matrices become more and
more similar from one iteration to the next. A starting
guess of uj � 0 and xj � 0 is best, because the sub-
problem is obtained by approximating the nonlinear
problem around the current iterate. We can however
make an excellent guess at the active set and the initial
working set, particularly on later iterations. Active set
methods will typically require just a few steps to iden-
tify the correct active set from this good initial guess.

Model predictive control also gives rise to sequence
of similar linear-quadatic problems. The usual pro-
cedure is to solve a problem like (1) using the cur-
rent state of the system as the initial value x0, and
then apply the control u0 until the next time point is
reached. The process is then repeated (Scokaert and
Rawlings, 1995; Rawlings and Muske, 1993). In the
absence of disturbances, the problems (1) are very sim-
ilar on successive steps, sometimes di�ering only in the
initial value x0. An excellent starting point can be ob-
tained from the solution at the previous set by setting

(x0; x1; : : : ; xN) = (xnew0 ; x�2 ; : : : ; x
�

N ; x
new
N);

(u0; u1; : : : ; uN�1) = (u�1 ; u
�

2 ; : : : ; u
�

N�2; u
new
N�1);

where u�j , x
�

j are the solution components at the pre-
vious step, xnew0 is the new initial state, and xnewN

and unewN�1 are some well-chosen estimates for the �-
nal stages. In the case of the active set approach, an
excellent starting guess can also be made for the active
constraint matrix �G.

In some situations, particularly when disturbances
are present, the starting point chosen by the obvi-
ous techniques may not be feasible even though it is
close to a solution. This represents no problem for the
infeasible-interior-point approach, although it is desir-
able in Algorithm IIP for the initial complementarity to
be comparable in size to the initial infeasibilities. The
active set method assumes a feasible starting point.
One remedy is to use a two-phase approach, in which
we solve a \Phase I" problem to �nd a feasible point,
then a \Phase II" problem to �nd the optimum. A
second option is to introduce penalty terms into the
objective for the infeasibilities and then obtain a solu-
tion in a single phase (provided that a heavy enough
penalty is imposed.)

Active set methods typically gain more from hot
starting than do interior-point methods, for reasons
that are not yet fully understood. On linear pro-
gramming problems, the best interior-point codes gain

about a factor of three in compute time when they
are hot started, in comparison with a \cold" (i.e., no
prior information) start. The relative savings for sim-
plex/active set methods are signi�cantly higher. It is
di�cult to predict how much the situation will change
when we consider the problem class (1). Numerical
testing is the only way to �nd out.

Acknowledgments

This work was supported by the Mathematical, Infor-
mation, and Computational Sciences Division subpro-
gram of the O�ce of Computational and Technology
Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

References

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra,
J., Du Croz, J., Greenbaum, A., Hammarling, S.,
McKenney, A., Ostrouchov, S. and Sorensen, D.
(1992). LAPACK User's Guide, SIAM, Philadel-
phia.

Ashcraft, C., Grimes, R. L. and Lewis, J. G. (1995). Accu-
rate symmetric inde�nite linear equation solvers.
in preparation.

Bertsekas, D. P. (1982). Projected Newton meth-
ods for optimization problems with simple con-
straints, SIAM Journal on Control and Optimiza-
tion 20: 221{246.

Dennis, J. E. and Schnabel, R. B. (1983). Numerical Meth-

ods for Unconstrained Optimization, Prentice-
Hall, Englewood Cli�s, NJ.

Dunn, J. C. and Bertsekas, D. P. (1989). E�cient dy-
namic programming implementations of Newton's
method for unconstrained optimal control prob-
lems, Journal of Optimization Theory and Appli-

cations 63: 23{38.

Fletcher, R. (1987). Practical Methods of Optimization, sec-
ond edn, John Wiley and Sons, New York.

Fourer, R. and Mehrotra, S. (1993). Solving symmetric
inde�nite systems in an interior-point method for
linear programming, Mathematical Programming

62: 15{39.

Garner, J., Spanbauer, M., Benedek, R., Strandburg, K. J.,
Wright, S. J. and Plassmann, P. E. (1992). Critical
�elds of josephson-coupled superconducting multi-
layers, Physical Review B 45: 7973{7983.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H.
(1991). Inertia-controlling methods for general
quadratic programming, SIAM Review 33: 1{36.

Golub, G. H. and Van Loan, C. F. (1989). Matrix Com-
putations, 2nd edn, The Johns Hopkins University
Press, Baltimore.

Jacobson, D. H. and Mayne, D. Q. (1970). Di�erential

Dynamic Programming, American Elsevier, New
York.

Kall, P. and Wallace, S. W. (1994). Stochastic Program-

ming, John Wiley and Sons.

Mehrotra, S. (1992). On the implementation of a primal-
dual interior point method, SIAM Journal on Op-

timization 2: 575{601.

10 IMPACT OF COMPUTER SCIENCE

National Research Council (1991). Four-Dimensional
Model Assimilation of Data, National Academy
Press.

Polak, E. (1970). Computational Methods in Optimization,
Academic Press, New York.

Rawlings, J. B., Meadows, E. S. and Muske, K. R. (1994).
Nonlinear model predictive control: A tutorial and
survey, Proceedings of ADCHEM, Tokyo, Japan.

Rawlings, J. B. and Muske, K. R. (1993). The stability of
constrained receding horizon control, IEEE Trans-

actions on Automatic Control 38(10): 1512{1516.

Scokaert, P. O. M. and Rawlings, J. B. (1995). Constrained
linear quadratic regulation, Technical report, De-
partment of Chemical Engineering, University of
Wisconsin-Madison.

Scokaert, P. O. M. and Rawlings, J. B. (1996). On in-
feasibilities in model predictive control, Chemical
Process Control: CPC-V, CACHE.

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regres-
sion, John Wiley and Sons, New York.

Vandenberghe, L. and Boyd, S. (1994). Semide�nite pro-
gramming, Technical report, Electrical Engineer-
ing Department, Stanford University, Stanford,
CA 94305. To appear in SIAM Review.

Wright, S. J. (1993a). Interior point methods for optimal
control of discrete-time systems, Journal of Opti-
mization Theory and Applications 77: 161{187.

Wright, S. J. (1993b). A path-following interior-point
algorithm for linear and quadratic optimization
problems, Preprint MCS{P401{1293, Mathemat-
ics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Ill. To appear in An-
nals of Operations Research.

Wright, S. J. (1996). Primal-Dual Interior-Point
Methods. Book in preparation. See URL
http://www.mcs.anl.gov/home/wright/ippd.html.

